
Assignment 6 
1. Find approximations for the two roots of the polynomial 0.0002358x2 – 5535.0x + 0.00003513 using the 

quadratic formula you learned in secondary school. Then, find the same roots, but choosing the appropriate 

formula for each. 

a =     0.0002358; 
b = -5535.0; 
c =     0.00003513; 
(-b + sqrt(b^2 - 4*a*c))/(2*a) % best for the larger root in absolute value 
        23473282.44274808 
(-b - sqrt(b^2 - 4*a*c))/(2*a) 
        5.785589705934657e-09 
(-2*c)/(b - sqrt(b^2 - 4*a*c)) % best for the smaller root in absolute value 
        6.346883468834690e-09 
 
2. Find approximations for the two roots of the polynomial 0.0002358x2 + 5535.0x – 0.00003513 using the 

quadratic formula you learned in secondary school. Then, find the same roots, but choosing the appropriate 

formula for each. 

a =    0.0002358; 
b = 5535.0; 
c =   -0.00003513; 
(-b + sqrt(b^2 - 4*a*c))/(2*a) 
        5.785589705934657e-09 
(-b - sqrt(b^2 - 4*a*c))/(2*a) % best for the larger root in absolute value 
       -23473282.44274810 
(-2*c)/(b + sqrt(b^2 - 4*a*c)) % best for the smaller root in absolute value 
        6.346883468834686e-09 
 
  



3. Given the function f (x) = x3 – x2 – x – 1, approximate the real root using two steps of each of: 

a. Newton’s method starting with x0 = 2.0, 

b. the bisection method starting with [1, 2], 

c. the bracketed secant method starting with [1, 2] (optional), and 

d. the secant method starting with x0 = 2.0 and x1 = 1.9. 

% Newton's method 
f = @(x)(x^3 - x^2 - x - 1.0); 
df = @(x)(3*x^2 - 2*x - 1.0); 
x0 = 2.0; 
x1 = x0 - f(x0)/df(x0) 
        x1 = 1.857142857142857 
x2 = x1 - f(x1)/df(x1) 
        x2 = 1.839544513457557 
 
% Bisection method 
a = 1; 
b = 2; 
m = (a + b)/2.0; 
if sign(f(a)) == sign(f(m)); a = m else b = m end 
         a = 1.500000000000000 
m = (a + b)/2.0; 
if sign(f(a)) == sign(f(m)); a = m else b = m end 
         a = 1.750000000000000 
 
% Bracketed secant method (optional) 
a = 1; 
b = 2; 
m = (a*f(b) - b*f(a))/(f(b) - f(a)); 
if sign(f(a)) == sign(f(m)); a = m else b = m end 
         a = 1.666666666666667 
m = (a*f(b) - b*f(a))/(f(b) - f(a)); 
if sign(f(a)) == sign(f(m)); a = m else b = m end 
         a = 1.816326530612245 
 
% Secant method 
x0 = 2.0; 
x1 = 1.9; 
x2 = (x0*f(x1) - x1*f(x0))/(f(x1) - f(x0)) 
        x2 = 1.846390168970814 
x3 = (x1*f(x2) - x2*f(x1))/(f(x2) - f(x1)) 
        x3 = 1.839628859068081 
 
 
  



4. Given the same function as in Question 3, approximate the first positive root using one step of each of: 

a. Muller’s method starting with x0 = 2.0, x1 = 1.9 and x2 = 1.8 (optional), and 

b. inverse quadratic interpolation with the same three points. 

% Muller's method (optional) 
x0 = 2.0; 
x1 = 1.9; 
x2 = 1.8; 
% Find the polynomial passing through 
%          (x0 - x2, f(x0)), (x1 - x2, f(x1)), (x2 - x2, f(x2)) 
p = polyfit( [x0 x1 x2] - x2, [f(x0) f(x1) f(x2)], 2 ) 
         p = 4.700000000000054   5.099999999999991  -0.208000000000000 
delta = (-2*p(3))/(p(2) + sqrt(p(2)^2 - 4*p(1)*p(3))) 
     delta = 3.935683999680209e-02 
x3 = x2 + delta 
        x3 = 1.839356839996802 
 
% Inverse quadratic interpolation 
x0 = 2.0; 
x1 = 1.9; 
x2 = 1.8; 
% Find the polynomial passing through (f(x0), x0), (f(x1), x1), (f(x2), x2) 
p = polyfit( [f(x0) f(x1) f(x2)], [x0 x1 x2], 2 ) 
         p = -0.02145975382064491   0.1825590389332351   1.838900714887409 
% Get the constant coefficient 
x3 = p(3) 
        x3 = 1.838900714887409 
  



5. Given the function f (x) = x2cos(0.4x)e–0.3x, approximate the first positive root using two steps of each of: 

a. Newton’s method starting with x0 = 4.0, 

b. the bisection method starting with [3, 4], 

c. the bracketed secant method starting with [3, 4] (optional), and 

d. the secant method starting with x0 = 3.8 and x1 = 3.9. 

% Newton's method 
f = @(x)(x^2*cos(0.4*x)*exp(-0.3*x)); 
df = @(x)(2.0*x  *cos(0.4*x)*exp(-0.3*x) 
        - 0.4*x^2*sin(0.4*x)*exp(-0.3*x) 
        - 0.3*x^2*cos(0.4*x)*exp(-0.3*x)); 
x0 = 4.0; 
x1 = x0 - f(x0)/df(x0) 
       x1 = 3.928021373533735 
x2 = x1 - f(x1)/df(x1) 
       x2 = 3.926991039021064 
 
% Bisection method 
a = 3.0; 
b = 4.0; 
m = (a + b)/2.0; 
if sign(f(a)) == sign(f(m)); a = m else b = m end 
        a = 3.500000000000000 
m = (a + b)/2.0; 
if sign(f(a)) == sign(f(m)); a = m else b = m end 
        a = 3.750000000000000 
 
% Bracketed secant method (optional) 
a = 3.0; 
b = 4.0; 
m = (a*f(b) - b*f(a))/(f(b) - f(a)); 
if sign(f(a)) == sign(f(m)); a = m else b = m end 
        a = 3.904055035798684 
m = (a*f(b) - b*f(a))/(f(b) - f(a)); 
if sign(f(a)) == sign(f(m)); a = m else b = m end 
        a = 3.926649703297110 
 
% Secant method 
x0 = 3.8; 
x1 = 3.9; 
x2 = (x0*f(x1) - x1*f(x0))/(f(x1) - f(x0)) 
       x2 = 3.927770674823227 
x3 = (x1*f(x2) - x2*f(x1))/(f(x2) - f(x1)) 
       x3 = 3.926986348481126 
  



6. Given the same function as in Question 5, approximate the first positive root using one step of each of: 

a. Muller’s method starting with x0 = 3.8, x1 = 4.0 and x2 = 3.9 (optional), and 

b. inverse quadratic interpolation with the same three points. 

% Muller's method (optional) 
x0 = 3.8; 
x1 = 4.0; 
x2 = 3.9; 
p = polyfit( [x0 x1 x2] - x2, [f(x0), f(x1), f(x2)], 2 ) 
         p = -0.4079818564029011  -1.876008417378137   0.05096502657785155 
delta = (-2*p(3))/(p(2) - sqrt(p(2)^2 - 4*p(1)*p(3))) 
     delta = 2.700810336615210e-02 
x3 = x2 + delta 
        x3 = 3.927008103366152 
 
x0 = 3.8; 
x1 = 4.0; 
x2 = 3.9; 
p = polyfit( [f(x0) f(x1) f(x2)], [x0 x1 x2], 2 ) 
         p = -0.06182184308358357  -0.5272495888523211   3.927031867462113 
x3 = p(3) 
        x3 = 3.927031867462113 
 
  



7. Describe the issues with using root-finding techniques for finding all the roots of a polynomial. 

Once you find one root, you must factor that root out of the polynomial using an algorithm such as synthetic 

division. Unfortunately, this introduces errors into the remaining coefficients, so the second root you find 

will only be the root of an approximation of the remaining polynomial. This accumulation of error will 

mean that subsequent roots will be accurate. 


